Nuprl Lemma : list-partition-permutation
∀T:Type. ∀L:T List. ∀f:ℕ||L|| ⟶ 𝔹.  let as,bs = list-partition(f;L) in permutation(T;L;as @ bs)
Proof
Definitions occuring in Statement : 
list-partition: list-partition(f;L)
, 
permutation: permutation(T;L1;L2)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
list-partition: list-partition(f;L)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
ge: i ≥ j 
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
cons: [a / b]
Lemmas referenced : 
list_induction, 
all_wf, 
int_seg_wf, 
length_wf, 
bool_wf, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
istype-void, 
permutation-nil, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
list-partition_wf, 
permutation_wf, 
append_wf, 
list_wf, 
istype-universe, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
decidable__le, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
subtype_rel_self, 
non_neg_length, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-le, 
istype-less_than, 
eqtt_to_assert, 
permutation-cons, 
cons_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
length-append, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
functionEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
Error :inhabitedIsType, 
productElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :functionIsType, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
voidElimination, 
setElimination, 
rename, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
addEquality, 
instantiate, 
universeEquality, 
applyEquality, 
unionElimination, 
minusEquality, 
multiplyEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
equalityElimination, 
promote_hyp, 
cumulativity, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}L:T  List.  \mforall{}f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}.    let  as,bs  =  list-partition(f;L)  in  permutation(T;L;as  @  bs)
Date html generated:
2019_06_20-PM-01_48_26
Last ObjectModification:
2018_11_28-PM-01_11_59
Theory : list_1
Home
Index