Nuprl Lemma : list_accum_set-equal

[T,A:Type]. ∀[g:T ⟶ A]. ∀[f:A ⟶ A ⟶ A].
  (∀[as,bs:T List].
     (∀[n:A]
        (accumulate (with value and list item z):
          f[a;g[z]]
         over list:
           as
         with starting value:
          n)
        accumulate (with value and list item z):
           f[a;g[z]]
          over list:
            bs
          with starting value:
           n)
        ∈ A)) supposing 
        (no_repeats(T;bs) and 
        no_repeats(T;as) and 
        set-equal(T;as;bs))) supposing 
     (Assoc(A;λx,y. f[x;y]) and 
     Comm(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) no_repeats: no_repeats(T;l) list_accum: list_accum list: List comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top or: P ∨ Q cons: [a b] set-equal: set-equal(T;x;y) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B guard: {T} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B l_disjoint: l_disjoint(T;l1;l2) not: ¬A
Lemmas referenced :  list_induction uall_wf list_wf isect_wf set-equal_wf no_repeats_wf equal_wf list_accum_wf list_accum_nil_lemma nil_wf list_accum_cons_lemma cons_wf assoc_wf comm_wf list-cases product_subtype_list nil_member false_wf l_member_wf cons_member set-equal-cons length_wf_nat nat_wf list_accum_permute squash_wf true_wf iff_weakening_equal list_ind_cons_lemma append_wf set-equal-equiv set-equal-permute no_repeats_cons no_repeats_append_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache applyEquality functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename functionEquality universeEquality unionElimination promote_hyp hypothesis_subsumption productElimination independent_pairFormation inlFormation independent_isectElimination dependent_set_memberEquality comment hyp_replacement applyLambdaEquality setElimination imageElimination natural_numberEquality imageMemberEquality baseClosed inrFormation productEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as,bs:T  List].
          (\mforall{}[n:A]
                (accumulate  (with  value  a  and  list  item  z):
                    f[a;g[z]]
                  over  list:
                      as
                  with  starting  value:
                    n)
                =  accumulate  (with  value  a  and  list  item  z):
                      f[a;g[z]]
                    over  list:
                        bs
                    with  starting  value:
                      n)))  supposing 
                (no\_repeats(T;bs)  and 
                no\_repeats(T;as)  and 
                set-equal(T;as;bs)))  supposing 
          (Assoc(A;\mlambda{}x,y.  f[x;y])  and 
          Comm(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2017_04_17-AM-07_38_16
Last ObjectModification: 2017_02_27-PM-04_11_53

Theory : list_1


Home Index