Nuprl Lemma : no_repeats_append_iff
∀[T:Type]. ∀[l1,l2:T List].  uiff(no_repeats(T;l1 @ l2);l_disjoint(T;l1;l2) ∧ no_repeats(T;l1) ∧ no_repeats(T;l2))
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
no_repeats: no_repeats(T;l)
, 
append: as @ bs
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
top: Top
, 
nat: ℕ
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
no_repeats: no_repeats(T;l)
, 
true: True
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
less_than: a < b
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
le: A ≤ B
, 
sq_type: SQType(T)
Lemmas referenced : 
istype-universe, 
list_wf, 
l_disjoint_wf, 
append_wf, 
no_repeats_wf, 
no_repeats_witness, 
no_repeats_append, 
sublist_append1, 
no_repeats-sublist, 
sublist_append2, 
istype-nat, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
istype-void, 
length-append, 
select_wf, 
length_wf, 
decidable__lt, 
istype-le, 
equal_wf, 
squash_wf, 
true_wf, 
select_append_front, 
subtype_rel_self, 
iff_weakening_equal, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
select_append_back, 
select_member, 
top_wf, 
subtype_rel_list, 
length_append, 
non_neg_length, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_eq_lemma, 
intformeq_wf
Rules used in proof : 
universeEquality, 
instantiate, 
productIsType, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
inhabitedIsType, 
functionIsTypeImplies, 
voidElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
independent_pairEquality, 
productElimination, 
sqequalRule, 
independent_isectElimination, 
independent_pairFormation, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
cumulativity, 
isectIsTypeImplies, 
functionIsType, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
natural_numberEquality, 
isect_memberEquality_alt, 
rename, 
setElimination, 
equalityIstype, 
unionElimination, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
addEquality, 
sqequalBase, 
intEquality, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].
    uiff(no\_repeats(T;l1  @  l2);l\_disjoint(T;l1;l2)  \mwedge{}  no\_repeats(T;l1)  \mwedge{}  no\_repeats(T;l2))
Date html generated:
2019_10_15-AM-10_22_15
Last ObjectModification:
2019_08_05-PM-01_59_05
Theory : list_1
Home
Index