Nuprl Lemma : no_repeats_append

[T:Type]. ∀[l1,l2:T List].  l_disjoint(T;l1;l2) supposing no_repeats(T;l1 l2)


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) no_repeats: no_repeats(T;l) append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  l_disjoint: l_disjoint(T;l1;l2) no_repeats: no_repeats(T;l) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False l_member: (x ∈ l) and: P ∧ Q exists: x:A. B[x] cand: c∧ B prop: so_lambda: λ2x.t[x] nat: top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) so_apply: x[s] less_than: a < b squash: T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  l_member_wf uall_wf nat_wf isect_wf less_than_wf length_wf append_wf not_wf equal_wf select_wf length-append nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf list_wf itermAdd_wf intformless_wf int_term_value_add_lemma int_formula_prop_less_lemma le_wf decidable__lt intformeq_wf int_formula_prop_eq_lemma squash_wf true_wf select_append_front lelt_wf iff_weakening_equal select_append_back add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination because_Cache hypothesis independent_functionElimination voidElimination productEquality extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality dependent_functionElimination setElimination rename independent_isectElimination isect_memberEquality voidEquality natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality addEquality imageElimination applyLambdaEquality applyEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    l\_disjoint(T;l1;l2)  supposing  no\_repeats(T;l1  @  l2)



Date html generated: 2017_04_17-AM-07_28_47
Last ObjectModification: 2017_02_27-PM-04_07_02

Theory : list_1


Home Index