Nuprl Lemma : member-firstn-implies-member

[T:Type]. ∀x:T. ∀L:T List. ∀n:ℤ.  ((x ∈ firstn(n;L))  (x ∈ L))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] uimplies: supposing a not: ¬A false: False or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  list_induction all_wf l_member_wf firstn_wf list_wf list_ind_nil_lemma nil_wf list_ind_cons_lemma ifthenelse_wf lt_int_wf cons_wf subtract_wf assert_wf bnot_wf not_wf less_than_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot cons_member equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality intEquality functionEquality hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename natural_numberEquality universeEquality equalityTransitivity equalitySymmetry independent_isectElimination unionElimination instantiate cumulativity productElimination independent_pairFormation impliesFunctionality inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.  \mforall{}n:\mBbbZ{}.    ((x  \mmember{}  firstn(n;L))  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_05_14-PM-01_27_15
Last ObjectModification: 2015_12_26-PM-04_50_54

Theory : list_1


Home Index