Nuprl Lemma : member-from-upto

n,m:ℤ. ∀k:{x:ℤ(n ≤ x) ∧ x < m} .  (k ∈ [n, m))


Proof




Definitions occuring in Statement :  from-upto: [n, m) l_member: (x ∈ l) less_than: a < b le: A ≤ B all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  all: x:A. B[x] l_member: (x ∈ l) exists: x:A. B[x] member: t ∈ T and: P ∧ Q nat: uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf length-from-upto lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__lt intformless_wf int_formula_prop_less_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf select-from-upto lelt_wf decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma length_wf from-upto_wf equal-wf-base-T select_wf nat_properties set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation setElimination thin rename cut sqequalHypSubstitution productElimination dependent_set_memberEquality because_Cache introduction extract_by_obid dependent_functionElimination natural_numberEquality isectElimination hypothesisEquality hypothesis unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination addEquality productEquality setEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}k:\{x:\mBbbZ{}|  (n  \mleq{}  x)  \mwedge{}  x  <  m\}  .    (k  \mmember{}  [n,  m))



Date html generated: 2017_04_17-AM-07_55_16
Last ObjectModification: 2017_02_27-PM-04_26_35

Theory : list_1


Home Index