Nuprl Lemma : member_upto2

n,i:ℕ.  (i ∈ upto(n)) supposing i < n


Proof




Definitions occuring in Statement :  upto: upto(n) l_member: (x ∈ l) int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: l_member: (x ∈ l) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  member-less_than length_upto select_upto lelt_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma less_than_wf length_wf int_seg_wf upto_wf equal_wf select_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_isectElimination dependent_pairFormation sqequalRule because_Cache dependent_set_memberEquality independent_pairFormation productElimination dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination natural_numberEquality lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productEquality

Latex:
\mforall{}n,i:\mBbbN{}.    (i  \mmember{}  upto(n))  supposing  i  <  n



Date html generated: 2017_04_17-AM-07_58_09
Last ObjectModification: 2017_02_27-PM-04_29_19

Theory : list_1


Home Index