Nuprl Lemma : mklist-add1-cons

[n:ℕ]. ∀[f:Top].  (mklist(n 1;f) [f mklist(n;λi.(f (i 1)))])


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) cons: [a b] nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: mklist: mklist(n;f) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf primrec0_lemma primrec1_lemma list_ind_nil_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf subtract-add-cancel primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int itermAdd_wf int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot add-subtract-cancel list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation sqequalAxiom unionElimination because_Cache addEquality equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].    (mklist(n  +  1;f)  \msim{}  [f  0  /  mklist(n;\mlambda{}i.(f  (i  +  1)))])



Date html generated: 2018_05_21-PM-00_36_53
Last ObjectModification: 2018_05_19-AM-06_43_57

Theory : list_1


Home Index