Nuprl Lemma : no_repeats-firstn

[T:Type]. ∀[l:T List].  ∀[n:ℤ]. no_repeats(T;firstn(n;l)) supposing no_repeats(T;l)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q firstn: firstn(n;as) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  list_induction isect_wf no_repeats_wf uall_wf firstn_wf list_wf list_ind_nil_lemma no_repeats_witness nil_wf list_ind_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int no_repeats_cons eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf no_repeats_nil ifthenelse_wf cons_wf subtract_wf member-firstn-implies-member l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis intEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache lambdaFormation rename natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_pairFormation dependent_pairFormation promote_hyp instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    \mforall{}[n:\mBbbZ{}].  no\_repeats(T;firstn(n;l))  supposing  no\_repeats(T;l)



Date html generated: 2017_04_17-AM-07_29_17
Last ObjectModification: 2017_02_27-PM-04_07_28

Theory : list_1


Home Index