Nuprl Lemma : not-assert-bl-exists

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  uiff(¬↑(∃x∈L.P[x])_b;(∀x∈L.¬↑P[x]))


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_all: (∀x∈L.P[x]) all: x:A. B[x] not: ¬A implies:  Q false: False so_apply: x[s] prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q l_exists: (∃x∈L. P[x])
Lemmas referenced :  assert-bl-exists list_wf bool_wf l_all_wf bl-exists_wf not_wf length_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties list-subtype l_member_wf select_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache lemma_by_obid isectElimination applyEquality setEquality hypothesis equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename productElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination lambdaFormation independent_functionElimination independent_pairEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    uiff(\mneg{}\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b;(\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x]))



Date html generated: 2016_05_14-PM-02_11_02
Last ObjectModification: 2016_01_15-AM-08_00_03

Theory : list_1


Home Index