Nuprl Lemma : not-assert-bl-exists
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  uiff(¬↑(∃x∈L.P[x])_b;(∀x∈L.¬↑P[x]))
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b, 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
not: ¬A, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
l_all: (∀x∈L.P[x]), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
so_apply: x[s], 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_exists: (∃x∈L. P[x])
Lemmas referenced : 
assert-bl-exists, 
list_wf, 
bool_wf, 
l_all_wf, 
bl-exists_wf, 
not_wf, 
length_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
list-subtype, 
l_member_wf, 
select_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
setEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
lambdaFormation, 
independent_functionElimination, 
independent_pairEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    uiff(\mneg{}\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b;(\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x]))
Date html generated:
2016_05_14-PM-02_11_02
Last ObjectModification:
2016_01_15-AM-08_00_03
Theory : list_1
Home
Index