Nuprl Lemma : null-mklist

[n:ℤ]. ∀[f:Top].  (null(mklist(n;f)) n ≤0)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) null: null(as) le_int: i ≤j uall: [x:A]. B[x] top: Top natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A null: null(as) mklist: mklist(n;f) primrec: primrec(n;b;c) exposed-btrue: exposed-btrue less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T nil: [] subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) nat: decidable: Dec(P)
Lemmas referenced :  le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf top_wf lt_int_wf assert_of_lt_int less_than_wf trivial-equal it_wf subtype_rel_union unit_wf2 full-omega-unsat intformand_wf intformle_wf itermVar_wf itermConstant_wf intformnot_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract-add-cancel mklist-add1-cons decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma null_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache sqequalRule voidElimination sqequalAxiom isect_memberEquality intEquality lessCases independent_pairFormation voidEquality imageMemberEquality baseClosed imageElimination inlEquality applyEquality lambdaEquality approximateComputation int_eqEquality dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:Top].    (null(mklist(n;f))  \msim{}  n  \mleq{}z  0)



Date html generated: 2018_05_21-PM-00_37_17
Last ObjectModification: 2018_05_19-AM-06_43_52

Theory : list_1


Home Index