Nuprl Lemma : pairwise-mapl-no-repeats

[T,T':Type].
  ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ T'.
    ∀[P:T' ⟶ T' ⟶ ℙ']
      (∀x,y:T.  ((x ∈ L)  (y ∈ L)  P[f x;f y] supposing ¬(x y ∈ T)))  (∀x,y∈mapl(f;L).  P[x;y]) 
      supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  mapl: mapl(f;l) pairwise: (∀x,y∈L.  P[x; y]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: uimplies: supposing a implies:  Q so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2y.t[x; y] mapl: mapl(f;l) top: Top iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True or: P ∨ Q guard: {T} cand: c∧ B uiff: uiff(P;Q) not: ¬A false: False l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T
Lemmas referenced :  list_induction all_wf l_member_wf uall_wf isect_wf no_repeats_wf not_wf equal_wf pairwise_wf2 mapl_wf list_wf no_repeats_witness nil_wf map_nil_lemma pairwise-nil cons_wf map_cons_lemma pairwise-cons cons_member subtype_rel_dep_function subtype_rel_sets set_wf no_repeats_cons member-mapl select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_member int_seg_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality because_Cache hypothesis applyEquality universeEquality setElimination rename isectEquality functionExtensionality dependent_set_memberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination natural_numberEquality inlFormation independent_isectElimination inrFormation independent_pairFormation equalityTransitivity equalitySymmetry unionElimination dependent_pairFormation int_eqEquality intEquality computeAll imageElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}']
            (\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  P[f  x;f  y]  supposing  \mneg{}(x  =  y)))  {}\mRightarrow{}  (\mforall{}x,y\mmember{}mapl(f;L).    P[x;y]) 
            supposing  no\_repeats(T;L)



Date html generated: 2017_04_17-AM-08_41_39
Last ObjectModification: 2017_02_27-PM-05_00_20

Theory : list_1


Home Index