Nuprl Lemma : pairwise-mapl-no-repeats
∀[T,T':Type].
  ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ T'.
    ∀[P:T' ⟶ T' ⟶ ℙ']
      (∀x,y:T.  ((x ∈ L) 
⇒ (y ∈ L) 
⇒ P[f x;f y] supposing ¬(x = y ∈ T))) 
⇒ (∀x,y∈mapl(f;L).  P[x;y]) 
      supposing no_repeats(T;L)
Proof
Definitions occuring in Statement : 
mapl: mapl(f;l)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
mapl: mapl(f;l)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
list_induction, 
all_wf, 
l_member_wf, 
uall_wf, 
isect_wf, 
no_repeats_wf, 
not_wf, 
equal_wf, 
pairwise_wf2, 
mapl_wf, 
list_wf, 
no_repeats_witness, 
nil_wf, 
map_nil_lemma, 
pairwise-nil, 
cons_wf, 
map_cons_lemma, 
pairwise-cons, 
cons_member, 
subtype_rel_dep_function, 
subtype_rel_sets, 
set_wf, 
no_repeats_cons, 
member-mapl, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member, 
int_seg_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
universeEquality, 
setElimination, 
rename, 
isectEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
natural_numberEquality, 
inlFormation, 
independent_isectElimination, 
inrFormation, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}']
            (\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  P[f  x;f  y]  supposing  \mneg{}(x  =  y)))  {}\mRightarrow{}  (\mforall{}x,y\mmember{}mapl(f;L).    P[x;y]) 
            supposing  no\_repeats(T;L)
Date html generated:
2017_04_17-AM-08_41_39
Last ObjectModification:
2017_02_27-PM-05_00_20
Theory : list_1
Home
Index