Nuprl Lemma : permutation-reverse

[A:Type]. ∀L:A List. permutation(A;L;rev(L))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) reverse: rev(as) list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: permutation: permutation(T;L1;L2) cand: c∧ B inject: Inj(A;B;f) nat: le: A ≤ B true: True subtract: m subtype_rel: A ⊆B ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  subtract_wf length_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf itermAdd_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf int_seg_wf length-reverse permute_list_length list_wf inject_wf equal_wf reverse_wf permute_list_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma list_extensionality less_than_wf nat_wf select_wf squash_wf le_wf add-associates minus-one-mul add-swap minus-one-mul-top add-commutes minus-add nat_properties true_wf select-reverse permute_list_select iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lambdaEquality dependent_set_memberEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis addEquality setElimination rename natural_numberEquality independent_pairFormation productElimination dependent_functionElimination unionElimination imageElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll because_Cache universeEquality equalityTransitivity equalitySymmetry productEquality functionExtensionality applyEquality applyLambdaEquality addLevel levelHypothesis minusEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}L:A  List.  permutation(A;L;rev(L))



Date html generated: 2017_04_17-AM-08_24_17
Last ObjectModification: 2017_02_27-PM-04_46_42

Theory : list_1


Home Index