Nuprl Lemma : pos_length3

[A:Type]. ∀[l:A List].  uiff(¬↑null(l);||l|| ≥ )


Proof




Definitions occuring in Statement :  length: ||as|| null: null(as) list: List assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] ge: i ≥  not: ¬A natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B
Lemmas referenced :  list_wf ge_wf decidable__lt null_wf assert_wf not_wf less_than'_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt length_wf decidable__le pos_length2
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation productElimination introduction independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    uiff(\mneg{}\muparrow{}null(l);||l||  \mgeq{}  1  )



Date html generated: 2016_05_14-AM-07_39_04
Last ObjectModification: 2016_01_15-AM-08_37_05

Theory : list_1


Home Index