Nuprl Lemma : select_zip

[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List]. ∀[i:ℕ].
  zip(as;bs)[i] = <as[i], bs[i]> ∈ (T1 × T2) supposing i < ||zip(as;bs)||


Proof




Definitions occuring in Statement :  zip: zip(as;bs) select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q zip: zip(as;bs) list_ind: list_ind nil: [] it: so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf length_wf zip_wf list_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases nil_wf list_ind_nil_lemma stuck-spread base_wf length_of_nil_lemma product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int cons_wf list_ind_cons_lemma length_of_cons_lemma decidable__lt zip_length squash_wf true_wf select_cons_tl iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality productEquality cumulativity equalityTransitivity equalitySymmetry because_Cache applyEquality unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination instantiate applyLambdaEquality dependent_set_memberEquality addEquality imageElimination universeEquality independent_pairEquality imageMemberEquality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:T1  List].  \mforall{}[bs:T2  List].  \mforall{}[i:\mBbbN{}].
    zip(as;bs)[i]  =  <as[i],  bs[i]>  supposing  i  <  ||zip(as;bs)||



Date html generated: 2017_04_17-AM-08_54_53
Last ObjectModification: 2017_02_27-PM-05_12_02

Theory : list_1


Home Index