Nuprl Lemma : strict-comparison-trans

[T:Type]. ∀cmp:comparison(T). Trans(T;x,y.0 < cmp y)


Proof




Definitions occuring in Statement :  comparison: comparison(T) trans: Trans(T;x,y.E[x; y]) less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) implies:  Q comparison: comparison(T) and: P ∧ Q prop: uimplies: supposing a decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B sq_type: SQType(T) guard: {T} cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B iff: ⇐⇒ Q
Lemmas referenced :  int_term_value_minus_lemma itermMinus_wf iff_weakening_equal le_wf equal-wf-T-base equal_wf all_wf comparison-anti true_wf squash_wf int_subtype_base subtype_base_sq int_formula_prop_eq_lemma intformeq_wf decidable__lt decidable__equal_int int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le member-less_than comparison_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename productElimination hypothesis lemma_by_obid isectElimination natural_numberEquality applyEquality hypothesisEquality dependent_functionElimination cumulativity sqequalRule lambdaEquality independent_isectElimination because_Cache universeEquality independent_functionElimination functionExtensionality unionElimination imageElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll instantiate equalityTransitivity equalitySymmetry dependent_set_memberEquality productEquality minusEquality functionEquality baseClosed imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Trans(T;x,y.0  <  cmp  x  y)



Date html generated: 2016_05_14-PM-02_38_18
Last ObjectModification: 2016_04_08-AM-01_26_10

Theory : list_1


Home Index