Nuprl Lemma : sub-co-list_transitivity

[T:Type]. ∀[s1,s2,s3:colist(T)].  (sub-co-list(T;s1;s2)  sub-co-list(T;s2;s3)  sub-co-list(T;s1;s3))


Proof




Definitions occuring in Statement :  sub-co-list: sub-co-list(T;s1;s2) colist: colist(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q sub-co-list: sub-co-list(T;s1;s2) exists: x:A. B[x] member: t ∈ T prop: nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  sub-co-list_wf colist_wf istype-universe combine-skips_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le list-at_wf equal_wf squash_wf true_wf list-at-at subtype_rel_self iff_weakening_equal nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin Error :universeIsType,  cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis Error :inhabitedIsType,  instantiate universeEquality Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :equalityIstype,  equalityTransitivity equalitySymmetry applyEquality imageElimination imageMemberEquality baseClosed because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[s1,s2,s3:colist(T)].
    (sub-co-list(T;s1;s2)  {}\mRightarrow{}  sub-co-list(T;s2;s3)  {}\mRightarrow{}  sub-co-list(T;s1;s3))



Date html generated: 2019_06_20-PM-01_21_59
Last ObjectModification: 2018_12_07-PM-06_34_14

Theory : list_1


Home Index