Nuprl Lemma : sublist-reverse
∀[T:Type]. ∀L1,L2:T List.  (rev(L1) ⊆ rev(L2) 
⇐⇒ L1 ⊆ L2)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
reverse: rev(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
sublist_wf, 
reverse_wf, 
reverse_nil_lemma, 
reverse-cons, 
nil-sublist, 
nil_wf, 
cons_wf, 
append_wf, 
false_wf, 
cons_sublist_nil, 
or_wf, 
equal_wf, 
cons_sublist_cons, 
sublist_append, 
sublist_weakening, 
sublist_transitivity, 
sublist_append1, 
reverse-reverse, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
universeEquality, 
cut, 
lambdaFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_functionElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
unionElimination, 
productEquality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
independent_pairFormation, 
applyEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (rev(L1)  \msubseteq{}  rev(L2)  \mLeftarrow{}{}\mRightarrow{}  L1  \msubseteq{}  L2)
Date html generated:
2017_04_17-AM-08_52_46
Last ObjectModification:
2017_02_27-PM-05_08_24
Theory : list_1
Home
Index