Nuprl Lemma : sublist-reverse

[T:Type]. ∀L1,L2:T List.  (rev(L1) ⊆ rev(L2) ⇐⇒ L1 ⊆ L2)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 reverse: rev(as) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] top: Top false: False iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q guard: {T} uimplies: supposing a rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  list_induction all_wf list_wf sublist_wf reverse_wf reverse_nil_lemma reverse-cons nil-sublist nil_wf cons_wf append_wf false_wf cons_sublist_nil or_wf equal_wf cons_sublist_cons sublist_append sublist_weakening sublist_transitivity sublist_append1 reverse-reverse subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality cut lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionEquality independent_functionElimination rename isect_memberEquality voidElimination voidEquality because_Cache dependent_functionElimination addLevel impliesFunctionality productElimination unionElimination productEquality independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality independent_pairFormation applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (rev(L1)  \msubseteq{}  rev(L2)  \mLeftarrow{}{}\mRightarrow{}  L1  \msubseteq{}  L2)



Date html generated: 2017_04_17-AM-08_52_46
Last ObjectModification: 2017_02_27-PM-05_08_24

Theory : list_1


Home Index