Nuprl Lemma : sublist_append
∀[T:Type]. ∀L1,L2,L1',L2':T List.  (L1 ⊆ L1' ⇒ L2 ⊆ L2' ⇒ L1 @ L2 ⊆ L1' @ L2')
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2, 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sublist: L1 ⊆ L2, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
subtype_rel: A ⊆r B, 
lelt: i ≤ j < k, 
squash: ↓T, 
less_than: a < b, 
ge: i ≥ j , 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
le: A ≤ B, 
or: P ∨ Q, 
decidable: Dec(P), 
top: Top, 
increasing: increasing(f;k), 
cand: A c∧ B, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
nat: ℕ, 
true: True, 
subtract: n - m
Lemmas referenced : 
sublist_wf, 
list_wf, 
istype-universe, 
bnot_wf, 
le_wf, 
le_int_wf, 
less_than_wf, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
length_wf, 
lt_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
lelt_wf, 
int_seg_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
add-member-int_seg2, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
top_wf, 
subtype_rel_list, 
length_append, 
append_wf, 
non_neg_length, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
length-append, 
subtract_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
istype-less_than, 
istype-int, 
istype-le, 
length_wf_nat, 
nat_properties, 
select_append_front, 
select_wf, 
iff_weakening_equal, 
subtract-is-int-iff, 
add-is-int-iff, 
false_wf, 
general_arith_equation1, 
minus-one-mul, 
add-associates, 
add-mul-special, 
zero-mul, 
add-zero, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
squash_wf, 
true_wf, 
select_append_back, 
subtype_rel_self, 
increasing_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
instantiate, 
universeEquality, 
lambdaEquality, 
because_Cache, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
rename, 
setElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
cumulativity, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
imageElimination, 
applyLambdaEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
addEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
Error :memTop, 
equalityIstype, 
promote_hyp, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
productIsType, 
imageMemberEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
multiplyEquality, 
minusEquality, 
functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L1',L2':T  List.    (L1  \msubseteq{}  L1'  {}\mRightarrow{}  L2  \msubseteq{}  L2'  {}\mRightarrow{}  L1  @  L2  \msubseteq{}  L1'  @  L2')
 Date html generated: 
2020_05_19-PM-09_42_06
 Last ObjectModification: 
2019_12_31-PM-00_14_53
Theory : list_1
Home
Index