Nuprl Lemma : trivial-mklist

[T:Type]. ∀[L:T List]. ∀[f:ℕ||L|| ⟶ T].  mklist(||L||;f) L ∈ (T List) supposing ∀i:ℕ||L||. ((f i) L[i] ∈ T)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top all: x:A. B[x] implies:  Q squash: T prop: nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] less_than: a < b so_apply: x[s]
Lemmas referenced :  list_extensionality mklist_wf length_wf_nat mklist_length length_wf equal_wf squash_wf true_wf mklist_select lelt_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf subtype_rel_self iff_weakening_equal less_than_wf nat_wf all_wf int_seg_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality lambdaFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache setElimination rename dependent_set_memberEquality independent_pairFormation dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality imageMemberEquality baseClosed instantiate productElimination functionExtensionality cumulativity axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  T].    mklist(||L||;f)  =  L  supposing  \mforall{}i:\mBbbN{}||L||.  ((f  i)  =  L[i])



Date html generated: 2018_05_21-PM-00_38_05
Last ObjectModification: 2018_05_19-AM-06_44_25

Theory : list_1


Home Index