Nuprl Lemma : Vieta-jumping-example2

k:ℤ. ∀a,b:ℕ.  (((((a a) (b b)) 1) (k b) ∈ ℤ (k 3 ∈ ℤ))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) cand: c∧ B nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma le_wf istype-nat mul_bounds_1a mul_cancel_in_le mul_nat_plus mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption Error :equalityIstype,  baseApply closedConclusion baseClosed intEquality sqequalBase addEquality cumulativity multiplyEquality promote_hyp

Latex:
\mforall{}k:\mBbbZ{}.  \mforall{}a,b:\mBbbN{}.    (((((a  *  a)  +  (b  *  b))  +  1)  =  (k  *  a  *  b))  {}\mRightarrow{}  (k  =  3))



Date html generated: 2019_06_20-PM-02_43_17
Last ObjectModification: 2019_03_10-PM-10_43_49

Theory : num_thy_1


Home Index