Nuprl Lemma : even-succ-implies-not-even

n:ℤ((↑isEven(n 1))  (¬↑isEven(n)))


Proof




Definitions occuring in Statement :  isEven: isEven(n) assert: b all: x:A. B[x] not: ¬A implies:  Q add: m natural_number: $n int:
Definitions unfolded in proof :  isEven: isEven(n) all: x:A. B[x] implies:  Q not: ¬A false: False uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top int_nzero: -o sq_type: SQType(T)
Lemmas referenced :  assert_of_eq_int modulus_wf neg_assert_of_eq_int equal_wf squash_wf true_wf add-one-mod-2 iff_weakening_equal satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf equal-wf-base int_subtype_base assert_wf eq_int_wf subtype_base_sq nequal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesis applyEquality natural_numberEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry lambdaEquality imageElimination hypothesisEquality universeEquality intEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseApply closedConclusion dependent_set_memberEquality addLevel instantiate cumulativity addEquality

Latex:
\mforall{}n:\mBbbZ{}.  ((\muparrow{}isEven(n  +  1))  {}\mRightarrow{}  (\mneg{}\muparrow{}isEven(n)))



Date html generated: 2017_04_17-AM-09_43_20
Last ObjectModification: 2017_02_27-PM-05_37_57

Theory : num_thy_1


Home Index