Nuprl Lemma : exp-is-zero

[x:ℤ]. ∀[n:ℕ].  uiff(x^n 0 ∈ ℤ;0 < n ∧ (x 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  exp: i^n nat: less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: uiff: uiff(P;Q) subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} true: True less_than: a < b squash: T less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q nat_plus: +
Lemmas referenced :  nat_wf int_term_value_mul_lemma int_formula_prop_eq_lemma itermMultiply_wf intformeq_wf decidable__equal_int le_wf exp_wf2 int_entire exp_step int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le subtype_base_sq exp0_lemma equal_wf and_wf int_subtype_base equal-wf-base member-less_than less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality equalityTransitivity equalitySymmetry axiomEquality baseApply closedConclusion baseClosed applyEquality because_Cache instantiate cumulativity promote_hyp imageElimination unionElimination dependent_set_memberEquality multiplyEquality

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    uiff(x\^{}n  =  0;0  <  n  \mwedge{}  (x  =  0))



Date html generated: 2016_05_14-PM-04_26_54
Last ObjectModification: 2016_01_14-PM-11_36_53

Theory : num_thy_1


Home Index