Nuprl Lemma : exp-le-iff
∀[n:ℕ+]. ∀[x,y:ℕ].  uiff(x ≤ y;x^n ≤ y^n)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
exp_preserves_lt, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
nat_plus_subtype_nat, 
exp_preserves_le, 
nat_plus_wf, 
nat_wf, 
le_wf, 
exp_wf2, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
imageElimination
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}].    uiff(x  \mleq{}  y;x\^{}n  \mleq{}  y\^{}n)
Date html generated:
2016_05_14-PM-04_26_40
Last ObjectModification:
2016_01_14-PM-11_37_05
Theory : num_thy_1
Home
Index