Nuprl Lemma : exp-le-iff

[n:ℕ+]. ∀[x,y:ℕ].  uiff(x ≤ y;x^n ≤ y^n)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B nat: prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat_plus: + ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T
Lemmas referenced :  exp_preserves_lt int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties nat_properties decidable__le nat_plus_subtype_nat exp_preserves_le nat_plus_wf nat_wf le_wf exp_wf2 less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis setElimination rename axiomEquality equalityTransitivity equalitySymmetry voidElimination isect_memberEquality independent_isectElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidEquality computeAll imageElimination

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}].    uiff(x  \mleq{}  y;x\^{}n  \mleq{}  y\^{}n)



Date html generated: 2016_05_14-PM-04_26_40
Last ObjectModification: 2016_01_14-PM-11_37_05

Theory : num_thy_1


Home Index