Nuprl Lemma : exp_functionality_wrt_eqmod
∀m,i,j:ℤ.  ((i ≡ j mod m) 
⇒ (∀n:ℕ. (i^n ≡ j^n mod m)))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
exp: i^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
eqmod_wf, 
exp_wf2, 
subtract_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
primrec-wf2, 
istype-nat, 
exp0_lemma, 
eqmod_weakening, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
istype-void, 
squash_wf, 
true_wf, 
exp_add, 
exp1, 
subtype_rel_self, 
iff_weakening_equal, 
eqmod_refl, 
eqmod_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
voidElimination, 
setIsType, 
because_Cache, 
inhabitedIsType, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination
Latex:
\mforall{}m,i,j:\mBbbZ{}.    ((i  \mequiv{}  j  mod  m)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (i\^{}n  \mequiv{}  j\^{}n  mod  m)))
Date html generated:
2020_05_19-PM-10_01_54
Last ObjectModification:
2020_01_01-AM-10_11_02
Theory : num_thy_1
Home
Index