Nuprl Lemma : exp_functionality_wrt_eqmod

m,i,j:ℤ.  ((i ≡ mod m)  (∀n:ℕ(i^n ≡ j^n mod m)))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m exp: i^n nat: all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} le: A ≤ B less_than': less_than'(a;b) true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eqmod_wf exp_wf2 subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-less_than primrec-wf2 istype-nat exp0_lemma eqmod_weakening subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma istype-void squash_wf true_wf exp_add exp1 subtype_rel_self iff_weakening_equal eqmod_refl eqmod_functionality_wrt_eqmod multiply_functionality_wrt_eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin rename setElimination universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation voidElimination setIsType because_Cache inhabitedIsType instantiate cumulativity intEquality equalityTransitivity equalitySymmetry applyEquality imageElimination multiplyEquality imageMemberEquality baseClosed universeEquality productElimination

Latex:
\mforall{}m,i,j:\mBbbZ{}.    ((i  \mequiv{}  j  mod  m)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (i\^{}n  \mequiv{}  j\^{}n  mod  m)))



Date html generated: 2020_05_19-PM-10_01_54
Last ObjectModification: 2020_01_01-AM-10_11_02

Theory : num_thy_1


Home Index