Nuprl Lemma : exp_mul

[i:ℤ]. ∀[n,m:ℕ].  (i^(m n) i^m^n ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat: uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q squash: T true: True nat_plus: + subtract: m subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than exp0_lemma mul-commutes zero-mul trivial-equal subtract-1-ge-0 istype-nat exp_add subtract_wf mul_bounds_1a decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma istype-le equal_wf squash_wf true_wf istype-universe exp_wf2 decidable__equal_int intformeq_wf itermMultiply_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_add_lemma exp_step decidable__lt add-commutes subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies because_Cache intEquality dependent_set_memberEquality_alt multiplyEquality unionElimination hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity instantiate universeEquality addEquality imageMemberEquality baseClosed minusEquality productElimination

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n,m:\mBbbN{}].    (i\^{}(m  *  n)  =  i\^{}m\^{}n)



Date html generated: 2020_05_19-PM-10_01_59
Last ObjectModification: 2019_12_31-AM-10_56_50

Theory : num_thy_1


Home Index