Nuprl Lemma : exp_mul
∀[i:ℤ]. ∀[n,m:ℕ].  (i^(m * n) = i^m^n ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
nat_plus: ℕ+
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
exp0_lemma, 
mul-commutes, 
zero-mul, 
trivial-equal, 
subtract-1-ge-0, 
istype-nat, 
exp_add, 
subtract_wf, 
mul_bounds_1a, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
exp_wf2, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
exp_step, 
decidable__lt, 
add-commutes, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
because_Cache, 
intEquality, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
unionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
addEquality, 
imageMemberEquality, 
baseClosed, 
minusEquality, 
productElimination
Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n,m:\mBbbN{}].    (i\^{}(m  *  n)  =  i\^{}m\^{}n)
Date html generated:
2020_05_19-PM-10_01_59
Last ObjectModification:
2019_12_31-AM-10_56_50
Theory : num_thy_1
Home
Index