Nuprl Lemma : fact_add1
∀[n:ℕ]. ((n + 1)! ~ (n + 1) * (n)!)
Proof
Definitions occuring in Statement : 
fact: (n)!
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
subtract: n - m
, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
nat_plus_wf, 
set_subtype_base, 
less_than_wf, 
istype-int, 
int_subtype_base, 
nat_properties, 
decidable__lt, 
fact_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
fact_unroll_1, 
istype-less_than, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
applyEquality, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :lambdaFormation_alt, 
because_Cache, 
multiplyEquality, 
axiomSqEquality
Latex:
\mforall{}[n:\mBbbN{}].  ((n  +  1)!  \msim{}  (n  +  1)  *  (n)!)
Date html generated:
2019_06_20-PM-02_30_20
Last ObjectModification:
2019_02_01-PM-01_13_24
Theory : num_thy_1
Home
Index