Nuprl Lemma : fact_add2
∀[n:ℕ]. ((n + 2)! ~ (n + 2) * (n + 1) * (n)!)
Proof
Definitions occuring in Statement :
fact: (n)!
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat: ℕ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
sq_type: SQType(T)
,
guard: {T}
,
and: P ∧ Q
Lemmas referenced :
subtype_base_sq,
nat_plus_wf,
set_subtype_base,
less_than_wf,
istype-int,
int_subtype_base,
nat_properties,
decidable__equal_int,
full-omega-unsat,
intformnot_wf,
intformeq_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
fact_add1,
decidable__le,
intformand_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
istype-le,
mul_nat_plus,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
istype-less_than,
fact_wf,
istype-nat
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesis,
independent_isectElimination,
sqequalRule,
intEquality,
Error :lambdaEquality_alt,
natural_numberEquality,
hypothesisEquality,
setElimination,
rename,
dependent_functionElimination,
because_Cache,
unionElimination,
approximateComputation,
independent_functionElimination,
Error :dependent_pairFormation_alt,
int_eqEquality,
Error :isect_memberEquality_alt,
voidElimination,
Error :universeIsType,
equalityTransitivity,
equalitySymmetry,
Error :dependent_set_memberEquality_alt,
addEquality,
independent_pairFormation,
axiomSqEquality
Latex:
\mforall{}[n:\mBbbN{}]. ((n + 2)! \msim{} (n + 2) * (n + 1) * (n)!)
Date html generated:
2019_06_20-PM-02_30_25
Last ObjectModification:
2019_02_01-PM-01_18_35
Theory : num_thy_1
Home
Index