Nuprl Lemma : gcd_eq_args

a:ℤ(gcd(a;a) a)


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) all: x:A. B[x] int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a gcd: gcd(a;b) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False eq_int: (i =z j) int_nzero: -o nequal: a ≠ b ∈  prop: decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  subtype_base_sq int_subtype_base eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int istype-int div_rem_sum nequal_wf div-self decidable__equal_int add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermAdd_wf itermMultiply_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule hypothesisEquality natural_numberEquality Error :inhabitedIsType,  unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp dependent_functionElimination independent_functionElimination because_Cache voidElimination Error :dependent_set_memberEquality_alt,  Error :universeIsType,  pointwiseFunctionality rename baseApply closedConclusion baseClosed approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  independent_pairFormation

Latex:
\mforall{}a:\mBbbZ{}.  (gcd(a;a)  \msim{}  a)



Date html generated: 2019_06_20-PM-02_22_02
Last ObjectModification: 2019_03_06-AM-11_06_19

Theory : num_thy_1


Home Index