Nuprl Lemma : rem-eqmod

a:ℤ. ∀m:ℤ-o.  ((a rem m) ≡ mod m)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m int_nzero: -o all: x:A. B[x] remainder: rem m int:
Definitions unfolded in proof :  uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B prop: and: P ∧ Q top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a implies:  Q not: ¬A nequal: a ≠ b ∈  int_nzero: -o exists: x:A. B[x] divides: a eqmod: a ≡ mod m member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  int_nzero_wf subtract_wf equal_wf false_wf int_term_value_add_lemma int_term_value_minus_lemma int_term_value_mul_lemma int_term_value_subtract_lemma itermAdd_wf itermMinus_wf itermMultiply_wf itermSubtract_wf multiply-is-int-iff add-is-int-iff decidable__equal_int int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat int_nzero_properties div_rem_sum
Rules used in proof :  multiplyEquality remainderEquality productElimination closedConclusion baseApply promote_hyp equalitySymmetry equalityTransitivity pointwiseFunctionality unionElimination baseClosed applyEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality hypothesis because_Cache rename setElimination divideEquality minusEquality dependent_pairFormation hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}m:\mBbbZ{}\msupminus{}\msupzero{}.    ((a  rem  m)  \mequiv{}  a  mod  m)



Date html generated: 2018_05_21-PM-00_55_53
Last ObjectModification: 2018_01_09-PM-03_49_50

Theory : num_thy_1


Home Index