Nuprl Lemma : rem-eqmod
∀a:ℤ. ∀m:ℤ-o.  ((a rem m) ≡ a mod m)
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
remainder: n rem m
, 
int: ℤ
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
exists: ∃x:A. B[x]
, 
divides: b | a
, 
eqmod: a ≡ b mod m
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_nzero_wf, 
subtract_wf, 
equal_wf, 
false_wf, 
int_term_value_add_lemma, 
int_term_value_minus_lemma, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
itermMinus_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
multiply-is-int-iff, 
add-is-int-iff, 
decidable__equal_int, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
int_nzero_properties, 
div_rem_sum
Rules used in proof : 
multiplyEquality, 
remainderEquality, 
productElimination, 
closedConclusion, 
baseApply, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
pointwiseFunctionality, 
unionElimination, 
baseClosed, 
applyEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
divideEquality, 
minusEquality, 
dependent_pairFormation, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}m:\mBbbZ{}\msupminus{}\msupzero{}.    ((a  rem  m)  \mequiv{}  a  mod  m)
Date html generated:
2018_05_21-PM-00_55_53
Last ObjectModification:
2018_01_09-PM-03_49_50
Theory : num_thy_1
Home
Index