Nuprl Lemma : const-poly_wf

[n:ℤ-o]. (const-poly(n) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  const-poly: const-poly(n) iPolynomial: iPolynomial() int_nzero: -o uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T const-poly: const-poly(n) iMonomial: iMonomial() all: x:A. B[x] top: Top int_seg: {i..j-} so_lambda: λ2x.t[x] uimplies: supposing a int_nzero: -o sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] prop: le: A ≤ B nequal: a ≠ b ∈  uiff: uiff(P;Q) subtype_rel: A ⊆B not: ¬A less_than': less_than'(a;b) true: True false: False or: P ∨ Q subtract: m nat_plus: + less_than: a < b sorted: sorted(L) exists: x:A. B[x]
Lemmas referenced :  cons_wf length_of_cons_lemma length_of_nil_lemma int_seg_wf length_wf int_nzero_wf list_wf nil_wf all_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 iMonomial_wf le_weakening2 zero-add not-equal-implies-less not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-zero add-swap le-add-cancel2 subtract_wf le_reflexive minus-one-mul one-mul add-mul-special two-mul add-commutes mul-distributes-right zero-mul false_wf omega-shadow less_than_wf mul-distributes mul-associates mul-commutes int_seg_properties int_nzero_properties sorted_wf subtype_rel_self less_than_transitivity1 less_than_irreflexivity equal_wf minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_pairEquality hypothesisEquality hypothesis lambdaFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality setElimination rename productEquality lambdaEquality independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination axiomEquality equalityTransitivity equalitySymmetry addEquality intEquality applyEquality unionElimination multiplyEquality minusEquality independent_pairFormation dependent_pairFormation promote_hyp

Latex:
\mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].  (const-poly(n)  \mmember{}  iPolynomial())



Date html generated: 2017_04_14-AM-08_59_38
Last ObjectModification: 2017_02_27-PM-03_42_00

Theory : omega


Home Index