Nuprl Lemma : int-dot-add-right

[cs,as,bs:ℤ List].  cs ⋅ as bs cs ⋅ as cs ⋅ bs supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  int-vec-add: as bs integer-dot-product: as ⋅ bs length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] add: m int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q top: Top cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b int-vec-add: as bs exists: x:A. B[x]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-base list_wf nat_wf list-cases int_dot_nil_left_lemma product_subtype_list spread_cons_lemma colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel equal-wf-T-base decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_subtype_base int_dot_cons_nil_lemma length_of_nil_lemma int_dot_cons_lemma length_of_cons_lemma non_neg_length length_wf_nat subtype_rel-equal base_wf length_wf integer-dot-product_wf add-mul-special two-mul mul-distributes-right zero-mul one-mul minus-zero decidable__equal_int not-equal-2 le-add-cancel2 mul-distributes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom intEquality baseApply closedConclusion baseClosed applyEquality because_Cache equalityTransitivity equalitySymmetry unionElimination voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality instantiate cumulativity dependent_pairFormation sqequalIntensionalEquality multiplyEquality

Latex:
\mforall{}[cs,as,bs:\mBbbZ{}  List].    cs  \mcdot{}  as  +  bs  \msim{}  cs  \mcdot{}  as  +  cs  \mcdot{}  bs  supposing  ||as||  =  ||bs||



Date html generated: 2017_04_14-AM-08_55_55
Last ObjectModification: 2017_02_27-PM-03_40_10

Theory : omega


Home Index