Nuprl Lemma : isr-omega

[n:ℕ]. ∀[eqs,ineqs:{L:ℤ List| ||L|| (n 1) ∈ ℤ}  List].  ¬satisfiable(eqs;ineqs) supposing ↑isr(omega(eqs;ineqs))


Proof




Definitions occuring in Statement :  omega: omega(eqs;ineqs) satisfiable-integer-problem: satisfiable(eqs;ineqs) length: ||as|| list: List nat: assert: b isr: isr(x) uimplies: supposing a uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False omega: omega(eqs;ineqs) int-constraint-problem: IntConstraints so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] unit: Unit callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) and: P ∧ Q cand: c∧ B
Lemmas referenced :  valueall-type-has-valueall int-constraint-problem_wf union-valueall-type tunion_wf nat_wf list_wf equal-wf-base-T unit_wf2 tunion-valueall-type product-valueall-type list-valueall-type set-valueall-type int-valueall-type equal-valueall-type omega_start_wf evalall-reduce isr-rep_int_constraint_step omega_step_wf omega_step_measure less_than_wf int-problem-dimension_wf unsat-omega_step unsat-int-problem_wf unsat-omega_start satisfiable-integer-problem_wf subtype_rel_list assert_wf isr_wf omega_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution sqequalRule extract_by_obid isectElimination hypothesis independent_isectElimination lambdaEquality productEquality setEquality intEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache addEquality setElimination rename natural_numberEquality independent_functionElimination callbyvalueReduce dependent_functionElimination independent_pairFormation voidElimination isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].
    \mneg{}satisfiable(eqs;ineqs)  supposing  \muparrow{}isr(omega(eqs;ineqs))



Date html generated: 2017_04_14-AM-09_12_43
Last ObjectModification: 2017_02_27-PM-03_50_00

Theory : omega


Home Index