Nuprl Lemma : isr-omega
∀[n:ℕ]. ∀[eqs,ineqs:{L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List].  ¬satisfiable(eqs;ineqs) supposing ↑isr(omega(eqs;ineqs))
Proof
Definitions occuring in Statement : 
omega: omega(eqs;ineqs)
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
isr: isr(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
omega: omega(eqs;ineqs)
, 
int-constraint-problem: IntConstraints
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
valueall-type-has-valueall, 
int-constraint-problem_wf, 
union-valueall-type, 
tunion_wf, 
nat_wf, 
list_wf, 
equal-wf-base-T, 
unit_wf2, 
tunion-valueall-type, 
product-valueall-type, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type, 
equal-valueall-type, 
omega_start_wf, 
evalall-reduce, 
isr-rep_int_constraint_step, 
omega_step_wf, 
omega_step_measure, 
less_than_wf, 
int-problem-dimension_wf, 
unsat-omega_step, 
unsat-int-problem_wf, 
unsat-omega_start, 
satisfiable-integer-problem_wf, 
subtype_rel_list, 
assert_wf, 
isr_wf, 
omega_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
productEquality, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
callbyvalueReduce, 
dependent_functionElimination, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].
    \mneg{}satisfiable(eqs;ineqs)  supposing  \muparrow{}isr(omega(eqs;ineqs))
Date html generated:
2017_04_14-AM-09_12_43
Last ObjectModification:
2017_02_27-PM-03_50_00
Theory : omega
Home
Index