Nuprl Lemma : omega_step_measure

p:IntConstraints
  (0 < dim(p)
   (dim((λp.omega_step(p)) p) < dim(p)
     ∨ ((dim((λp.omega_step(p)) p) dim(p) ∈ ℤ) ∧ num-eq-constraints((λp.omega_step(p)) p) < num-eq-constraints(p))))


Proof




Definitions occuring in Statement :  omega_step: omega_step(p) num-eq-constraints: num-eq-constraints(p) int-problem-dimension: dim(p) int-constraint-problem: IntConstraints less_than: a < b all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a lambda: λx.A[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q omega_step: omega_step(p) int-problem-dimension: dim(p) and: P ∧ Q prop: false: False not: ¬A uiff: uiff(P;Q) uimplies: supposing a top: Top le: A ≤ B less_than': less_than'(a;b) true: True int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] nil: [] it: less_than: a < b squash: T cons: [a b] subtract: m int_seg: {i..j-} iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) lelt: i ≤ j < k unit: Unit num-eq-constraints: num-eq-constraints(p) pi1: fst(t) exists: x:A. B[x] ge: i ≥  nat_plus: + bool: 𝔹 btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b int_upper: {i...} length: ||as|| list_ind: list_ind hd: hd(l) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B
Lemmas referenced :  decidable__lt int-problem-dimension_wf omega_step_wf istype-int less_than_wf num-eq-constraints_wf decidable__and2 equal_wf decidable__equal_int less-iff-le add_functionality_wrt_le add-associates istype-void add-zero add-commutes le-add-cancel2 subtype_base_sq int_subtype_base set_wf list_wf length_wf list-cases product_subtype_list reduce_hd_cons_lemma subtract_wf first-success_wf equal-wf-base-T list_subtype_base equal-wf-base int_seg_wf equal-wf-T-base absval_wf select_wf decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top le-add-cancel find-exact-eq-constraint_wf not-lt-2 le_antisymmetry_iff add-swap istype-top exact-reduce-constraints_wf2 set_subtype_base lelt_wf gcd-reduce-eq-constraints_wf2 not-equal-2 minus-zero minus-minus le_wf nil_wf gcd-reduce-ineq-constraints_wf2 length_of_nil_lemma length_of_cons_lemma not_wf non_neg_length length_wf_nat not-equal-implies-less less_than_transitivity1 less_than_irreflexivity le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow int_seg_properties nat_properties le-add-cancel-alt null_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf shadow_inequalities_wf subtype_rel_list_set null_nil_lemma btrue_wf null_cons_lemma bfalse_wf btrue_neq_bfalse nat_wf eager-map-is-map list-value-type eager-map_wf int-value-type append_wf map_wf map-length map_cons_lemma list_ind_cons_lemma cons_one_one cons_wf length-map member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  equalityTransitivity equalitySymmetry sqequalRule because_Cache unionElimination Error :inlFormation_alt,  Error :productIsType,  Error :equalityIsType1,  Error :universeIsType,  Error :inrFormation_alt,  intEquality Error :isect_memberEquality_alt,  independent_functionElimination voidElimination natural_numberEquality productElimination independent_isectElimination addEquality imageElimination instantiate cumulativity independent_pairFormation imageMemberEquality baseClosed promote_hyp hypothesis_subsumption setEquality baseApply closedConclusion productEquality minusEquality Error :setIsType,  Error :equalityIsType4,  equalityElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :dependent_set_memberEquality_alt,  applyLambdaEquality Error :dependent_pairFormation_alt,  sqequalIntensionalEquality multiplyEquality Error :inlEquality_alt,  Error :dependent_pairEquality_alt,  independent_pairEquality

Latex:
\mforall{}p:IntConstraints
    (0  <  dim(p)
    {}\mRightarrow{}  (dim((\mlambda{}p.omega\_step(p))  p)  <  dim(p)
          \mvee{}  ((dim((\mlambda{}p.omega\_step(p))  p)  =  dim(p))
              \mwedge{}  num-eq-constraints((\mlambda{}p.omega\_step(p))  p)  <  num-eq-constraints(p))))



Date html generated: 2019_06_20-PM-00_51_30
Last ObjectModification: 2018_10_03-AM-00_13_25

Theory : omega


Home Index