Nuprl Lemma : omega_step_measure
∀p:IntConstraints
  (0 < dim(p)
  
⇒ (dim((λp.omega_step(p)) p) < dim(p)
     ∨ ((dim((λp.omega_step(p)) p) = dim(p) ∈ ℤ) ∧ num-eq-constraints((λp.omega_step(p)) p) < num-eq-constraints(p))))
Proof
Definitions occuring in Statement : 
omega_step: omega_step(p)
, 
num-eq-constraints: num-eq-constraints(p)
, 
int-problem-dimension: dim(p)
, 
int-constraint-problem: IntConstraints
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
omega_step: omega_step(p)
, 
int-problem-dimension: dim(p)
, 
and: P ∧ Q
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
int-constraint-problem: IntConstraints
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nil: []
, 
it: ⋅
, 
less_than: a < b
, 
squash: ↓T
, 
cons: [a / b]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
unit: Unit
, 
num-eq-constraints: num-eq-constraints(p)
, 
pi1: fst(t)
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
int_upper: {i...}
, 
length: ||as||
, 
list_ind: list_ind, 
hd: hd(l)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cand: A c∧ B
Lemmas referenced : 
decidable__lt, 
int-problem-dimension_wf, 
omega_step_wf, 
istype-int, 
less_than_wf, 
num-eq-constraints_wf, 
decidable__and2, 
equal_wf, 
decidable__equal_int, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
istype-void, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_base_sq, 
int_subtype_base, 
set_wf, 
list_wf, 
length_wf, 
list-cases, 
product_subtype_list, 
reduce_hd_cons_lemma, 
subtract_wf, 
first-success_wf, 
equal-wf-base-T, 
list_subtype_base, 
equal-wf-base, 
int_seg_wf, 
equal-wf-T-base, 
absval_wf, 
select_wf, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
le-add-cancel, 
find-exact-eq-constraint_wf, 
not-lt-2, 
le_antisymmetry_iff, 
add-swap, 
istype-top, 
exact-reduce-constraints_wf2, 
set_subtype_base, 
lelt_wf, 
gcd-reduce-eq-constraints_wf2, 
not-equal-2, 
minus-zero, 
minus-minus, 
le_wf, 
nil_wf, 
gcd-reduce-ineq-constraints_wf2, 
length_of_nil_lemma, 
length_of_cons_lemma, 
not_wf, 
non_neg_length, 
length_wf_nat, 
not-equal-implies-less, 
less_than_transitivity1, 
less_than_irreflexivity, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
int_seg_properties, 
nat_properties, 
le-add-cancel-alt, 
null_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
shadow_inequalities_wf, 
subtype_rel_list_set, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
nat_wf, 
eager-map-is-map, 
list-value-type, 
eager-map_wf, 
int-value-type, 
append_wf, 
map_wf, 
map-length, 
map_cons_lemma, 
list_ind_cons_lemma, 
cons_one_one, 
cons_wf, 
length-map, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
because_Cache, 
unionElimination, 
Error :inlFormation_alt, 
Error :productIsType, 
Error :equalityIsType1, 
Error :universeIsType, 
Error :inrFormation_alt, 
intEquality, 
Error :isect_memberEquality_alt, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
addEquality, 
imageElimination, 
instantiate, 
cumulativity, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
setEquality, 
baseApply, 
closedConclusion, 
productEquality, 
minusEquality, 
Error :setIsType, 
Error :equalityIsType4, 
equalityElimination, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :dependent_set_memberEquality_alt, 
applyLambdaEquality, 
Error :dependent_pairFormation_alt, 
sqequalIntensionalEquality, 
multiplyEquality, 
Error :inlEquality_alt, 
Error :dependent_pairEquality_alt, 
independent_pairEquality
Latex:
\mforall{}p:IntConstraints
    (0  <  dim(p)
    {}\mRightarrow{}  (dim((\mlambda{}p.omega\_step(p))  p)  <  dim(p)
          \mvee{}  ((dim((\mlambda{}p.omega\_step(p))  p)  =  dim(p))
              \mwedge{}  num-eq-constraints((\mlambda{}p.omega\_step(p))  p)  <  num-eq-constraints(p))))
Date html generated:
2019_06_20-PM-00_51_30
Last ObjectModification:
2018_10_03-AM-00_13_25
Theory : omega
Home
Index