Nuprl Lemma : isr-rep_int_constraint_step
∀[f:IntConstraints ⟶ IntConstraints]. ∀[p:IntConstraints].
  (unsat(p)) supposing 
     ((↑isr(rep_int_constraint_step(f;p))) and 
     ((∀p:IntConstraints
         (0 < dim(p)
         ⇒ (dim(f p) < dim(p) ∨ ((dim(f p) = dim(p) ∈ ℤ) ∧ num-eq-constraints(f p) < num-eq-constraints(p)))))
     ∧ (∀p:IntConstraints. (unsat(f p) ⇒ unsat(p)))))
Proof
Definitions occuring in Statement : 
rep_int_constraint_step: rep_int_constraint_step(f;p), 
num-eq-constraints: num-eq-constraints(p), 
int-problem-dimension: dim(p), 
unsat-int-problem: unsat(p), 
int-constraint-problem: IntConstraints, 
assert: ↑b, 
isr: isr(x), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
prop: ℙ, 
unsat-int-problem: unsat(p), 
not: ¬A, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
sq_stable: SqStable(P), 
squash: ↓T, 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
less_than: a < b, 
int-constraint-problem: IntConstraints, 
rep_int_constraint_step: rep_int_constraint_step(f;p), 
callbyvalueall: callbyvalueall, 
unit: Unit, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
bool: 𝔹, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isr: isr(x), 
satisfies-int-constraint-problem: xs |= p
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
satisfies-int-constraint-problem_wf, 
list_wf, 
assert_wf, 
isr_wf, 
tunion_wf, 
nat_wf, 
equal-wf-base-T, 
unit_wf2, 
rep_int_constraint_step_wf, 
int-constraint-problem_wf, 
int-problem-dimension_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
add_nat_wf, 
le_wf, 
sq_stable__le, 
equal_wf, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
all_wf, 
or_wf, 
num-eq-constraints_wf, 
unsat-int-problem_wf, 
subtype_rel-equal, 
base_wf, 
le_weakening, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
minus-zero, 
omega-shadow, 
list_subtype_base, 
int_subtype_base, 
equal-wf-T-base, 
evalall-reduce, 
union-valueall-type, 
tunion-valueall-type, 
product-valueall-type, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type, 
equal-valueall-type, 
valueall-type-has-valueall, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_transitivity2, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
intEquality, 
productEquality, 
setEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
addEquality, 
functionExtensionality, 
unionElimination, 
independent_pairFormation, 
minusEquality, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
functionEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyLambdaEquality, 
promote_hyp, 
addLevel, 
levelHypothesis, 
callbyvalueReduce, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
instantiate, 
cumulativity
Latex:
\mforall{}[f:IntConstraints  {}\mrightarrow{}  IntConstraints].  \mforall{}[p:IntConstraints].
    (unsat(p))  supposing 
          ((\muparrow{}isr(rep\_int\_constraint\_step(f;p)))  and 
          ((\mforall{}p:IntConstraints
                  (0  <  dim(p)
                  {}\mRightarrow{}  (dim(f  p)  <  dim(p)
                        \mvee{}  ((dim(f  p)  =  dim(p))  \mwedge{}  num-eq-constraints(f  p)  <  num-eq-constraints(p)))))
          \mwedge{}  (\mforall{}p:IntConstraints.  (unsat(f  p)  {}\mRightarrow{}  unsat(p)))))
Date html generated:
2017_04_14-AM-09_10_59
Last ObjectModification:
2017_02_27-PM-03_48_31
Theory : omega
Home
Index