Nuprl Lemma : isr-rep_int_constraint_step

[f:IntConstraints ⟶ IntConstraints]. ∀[p:IntConstraints].
  (unsat(p)) supposing 
     ((↑isr(rep_int_constraint_step(f;p))) and 
     ((∀p:IntConstraints
         (0 < dim(p)
          (dim(f p) < dim(p) ∨ ((dim(f p) dim(p) ∈ ℤ) ∧ num-eq-constraints(f p) < num-eq-constraints(p)))))
     ∧ (∀p:IntConstraints. (unsat(f p)  unsat(p)))))


Proof




Definitions occuring in Statement :  rep_int_constraint_step: rep_int_constraint_step(f;p) num-eq-constraints: num-eq-constraints(p) int-problem-dimension: dim(p) unsat-int-problem: unsat(p) int-constraint-problem: IntConstraints assert: b isr: isr(x) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: unsat-int-problem: unsat(p) not: ¬A so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_stable: SqStable(P) squash: T exists: x:A. B[x] nat_plus: + less_than: a < b int-constraint-problem: IntConstraints rep_int_constraint_step: rep_int_constraint_step(f;p) callbyvalueall: callbyvalueall unit: Unit has-value: (a)↓ has-valueall: has-valueall(a) bool: 𝔹 it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b isr: isr(x) satisfies-int-constraint-problem: xs |= p
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf satisfies-int-constraint-problem_wf list_wf assert_wf isr_wf tunion_wf nat_wf equal-wf-base-T unit_wf2 rep_int_constraint_step_wf int-constraint-problem_wf int-problem-dimension_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel add_nat_wf le_wf sq_stable__le equal_wf decidable__lt not-lt-2 add-mul-special zero-mul all_wf or_wf num-eq-constraints_wf unsat-int-problem_wf subtype_rel-equal base_wf le_weakening le_reflexive one-mul two-mul mul-distributes-right minus-zero omega-shadow list_subtype_base int_subtype_base equal-wf-T-base evalall-reduce union-valueall-type tunion-valueall-type product-valueall-type list-valueall-type set-valueall-type int-valueall-type equal-valueall-type valueall-type-has-valueall lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_transitivity2 true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lambdaFormation extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination intEquality productEquality setEquality baseApply closedConclusion baseClosed applyEquality because_Cache addEquality functionExtensionality unionElimination independent_pairFormation minusEquality isect_memberEquality voidEquality dependent_set_memberEquality imageMemberEquality imageElimination equalityTransitivity equalitySymmetry multiplyEquality functionEquality dependent_pairFormation sqequalIntensionalEquality applyLambdaEquality promote_hyp addLevel levelHypothesis callbyvalueReduce equalityElimination lessCases sqequalAxiom instantiate cumulativity

Latex:
\mforall{}[f:IntConstraints  {}\mrightarrow{}  IntConstraints].  \mforall{}[p:IntConstraints].
    (unsat(p))  supposing 
          ((\muparrow{}isr(rep\_int\_constraint\_step(f;p)))  and 
          ((\mforall{}p:IntConstraints
                  (0  <  dim(p)
                  {}\mRightarrow{}  (dim(f  p)  <  dim(p)
                        \mvee{}  ((dim(f  p)  =  dim(p))  \mwedge{}  num-eq-constraints(f  p)  <  num-eq-constraints(p)))))
          \mwedge{}  (\mforall{}p:IntConstraints.  (unsat(f  p)  {}\mRightarrow{}  unsat(p)))))



Date html generated: 2017_04_14-AM-09_10_59
Last ObjectModification: 2017_02_27-PM-03_48_31

Theory : omega


Home Index