Nuprl Lemma : member-and-poly-constraints
∀L1,L2:polynomial-constraints() List. ∀X:polynomial-constraints().
  ((X ∈ and-poly-constraints(L1;L2)) 
⇐⇒ (∃A∈L1. (∃B∈L2. X = combine-pcs(A;B) ∈ polynomial-constraints())))
Proof
Definitions occuring in Statement : 
and-poly-constraints: and-poly-constraints(Xs;Ys)
, 
combine-pcs: combine-pcs(X;Y)
, 
polynomial-constraints: polynomial-constraints()
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
and-poly-constraints: and-poly-constraints(Xs;Ys)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
polynomial-constraints: polynomial-constraints()
, 
iPolynomial: iPolynomial()
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
Lemmas referenced : 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
polynomial-constraints_wf, 
nil_wf, 
btrue_neq_bfalse, 
or_wf, 
l_member_wf, 
l_exists_wf, 
equal_wf, 
combine-pcs_wf, 
list_accum_wf, 
list_wf, 
cons_wf, 
all_wf, 
iff_wf, 
list_induction, 
list_accum_nil_lemma, 
false_wf, 
list_accum_cons_lemma, 
l_exists_nil, 
l_exists_wf_nil, 
l_exists_functionality, 
set_wf, 
l_exists_cons, 
subtype_base_sq, 
list_subtype_base, 
product_subtype_base, 
iPolynomial_wf, 
set_subtype_base, 
iMonomial_wf, 
int_seg_wf, 
length_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
nequal_wf, 
int_subtype_base, 
cons_member, 
exists_wf, 
l_exists_iff, 
member_singleton, 
and_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
unionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
inrFormation, 
because_Cache, 
addLevel, 
allFunctionality, 
productElimination, 
impliesFunctionality, 
isect_memberEquality, 
voidEquality, 
inlFormation, 
orFunctionality, 
applyEquality, 
instantiate, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intEquality, 
functionEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
levelHypothesis, 
promote_hyp, 
productEquality
Latex:
\mforall{}L1,L2:polynomial-constraints()  List.  \mforall{}X:polynomial-constraints().
    ((X  \mmember{}  and-poly-constraints(L1;L2))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}A\mmember{}L1.  (\mexists{}B\mmember{}L2.  X  =  combine-pcs(A;B))))
Date html generated:
2017_04_14-AM-09_02_15
Last ObjectModification:
2017_02_27-PM-03_44_36
Theory : omega
Home
Index