Nuprl Lemma : member-and-poly-constraints

L1,L2:polynomial-constraints() List. ∀X:polynomial-constraints().
  ((X ∈ and-poly-constraints(L1;L2)) ⇐⇒ (∃A∈L1. (∃B∈L2. combine-pcs(A;B) ∈ polynomial-constraints())))


Proof




Definitions occuring in Statement :  and-poly-constraints: and-poly-constraints(Xs;Ys) combine-pcs: combine-pcs(X;Y) polynomial-constraints: polynomial-constraints() l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  and-poly-constraints: and-poly-constraints(Xs;Ys) all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] top: Top subtype_rel: A ⊆B l_exists: (∃x∈L. P[x]) exists: x:A. B[x] polynomial-constraints: polynomial-constraints() iPolynomial: iPolynomial() int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T iMonomial: iMonomial() int_nzero: -o sq_type: SQType(T)
Lemmas referenced :  null_nil_lemma btrue_wf member-implies-null-eq-bfalse polynomial-constraints_wf nil_wf btrue_neq_bfalse or_wf l_member_wf l_exists_wf equal_wf combine-pcs_wf list_accum_wf list_wf cons_wf all_wf iff_wf list_induction list_accum_nil_lemma false_wf list_accum_cons_lemma l_exists_nil l_exists_wf_nil l_exists_functionality set_wf l_exists_cons subtype_base_sq list_subtype_base product_subtype_base iPolynomial_wf set_subtype_base iMonomial_wf int_seg_wf length_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 int_nzero_wf sorted_wf subtype_rel_self nequal_wf int_subtype_base cons_member exists_wf l_exists_iff member_singleton and_wf
Rules used in proof :  cut sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairFormation unionElimination introduction extract_by_obid isectElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination lambdaEquality setElimination rename setEquality inrFormation because_Cache addLevel allFunctionality productElimination impliesFunctionality isect_memberEquality voidEquality inlFormation orFunctionality applyEquality instantiate cumulativity natural_numberEquality imageMemberEquality baseClosed imageElimination intEquality functionEquality dependent_pairFormation dependent_set_memberEquality applyLambdaEquality levelHypothesis promote_hyp productEquality

Latex:
\mforall{}L1,L2:polynomial-constraints()  List.  \mforall{}X:polynomial-constraints().
    ((X  \mmember{}  and-poly-constraints(L1;L2))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}A\mmember{}L1.  (\mexists{}B\mmember{}L2.  X  =  combine-pcs(A;B))))



Date html generated: 2017_04_14-AM-09_02_15
Last ObjectModification: 2017_02_27-PM-03_44_36

Theory : omega


Home Index