Nuprl Lemma : satisfies-shadow_inequalities

[n:{2...}]
  ∀ineqs:{L:ℤ List| ||L|| n ∈ ℤ}  List
    ((∃xs:ℤ List. (∀as∈ineqs.xs ⋅ as ≥0))  (∃xs:ℤ List. (∀as∈shadow_inequalities(ineqs).xs ⋅ as ≥0)))


Proof




Definitions occuring in Statement :  shadow_inequalities: shadow_inequalities(ineqs) satisfies-integer-inequality: xs ⋅ as ≥0 l_all: (∀x∈L.P[x]) length: ||as|| list: List int_upper: {i...} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_upper: {i...} prop: so_apply: x[s] or: P ∨ Q shadow_inequalities: shadow_inequalities(ineqs) nil: [] it: cons: [a b] subtype_rel: A ⊆B uimplies: supposing a top: Top nat_plus: + le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) less_than': less_than'(a;b) true: True nat: listp: List+ guard: {T} subtract: m int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T sq_type: SQType(T) ge: i ≥  less_than: a < b has-value: (a)↓
Lemmas referenced :  set_wf list_wf equal_wf length_wf list-cases product_subtype_list l_all_wf equal-wf-base-T list_subtype_base int_subtype_base satisfies-integer-inequality_wf istype-int set_subtype_base le_wf l_member_wf int_upper_wf nil_wf l_all_nil istype-void l_all_wf_nil max_tl_coeffs_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf length_of_cons_lemma non_neg_length length_wf_nat cons_wf index-of-min_wf subtype_rel_sets subtract_wf le_antisymmetry_iff condition-implies-le minus-add minus-minus minus-one-mul add-swap minus-one-mul-top add-associates subtype_rel_set int_seg_wf all_wf select_wf sq_stable__le subtype_base_sq nat_wf decidable__le not-le-2 subtype_rel_self le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul minus-zero add-zero omega-shadow int_upper_properties nat_properties value-type-has-value int-value-type list-delete_wf shadow-inequalities_wf add-member-int_seg2 le-add-cancel2 lelt_wf satisfies-shadow-inequalities upper_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination intEquality hypothesis sqequalRule Error :lambdaEquality_alt,  hypothesisEquality setElimination rename Error :universeIsType,  dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption Error :productIsType,  setEquality baseApply closedConclusion baseClosed because_Cache applyEquality independent_isectElimination Error :setIsType,  Error :inhabitedIsType,  Error :equalityIsType4,  natural_numberEquality Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation sqequalIntensionalEquality addEquality minusEquality functionEquality imageMemberEquality imageElimination instantiate cumulativity multiplyEquality callbyvalueReduce

Latex:
\mforall{}[n:\{2...\}]
    \mforall{}ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List
        ((\mexists{}xs:\mBbbZ{}  List.  (\mforall{}as\mmember{}ineqs.xs  \mcdot{}  as  \mgeq{}0))
        {}\mRightarrow{}  (\mexists{}xs:\mBbbZ{}  List.  (\mforall{}as\mmember{}shadow\_inequalities(ineqs).xs  \mcdot{}  as  \mgeq{}0)))



Date html generated: 2019_06_20-PM-00_50_40
Last ObjectModification: 2018_10_03-AM-00_13_30

Theory : omega


Home Index