Nuprl Lemma : satisfies-shadow_inequalities
∀[n:{2...}]
  ∀ineqs:{L:ℤ List| ||L|| = n ∈ ℤ}  List
    ((∃xs:ℤ List. (∀as∈ineqs.xs ⋅ as ≥0)) ⇒ (∃xs:ℤ List. (∀as∈shadow_inequalities(ineqs).xs ⋅ as ≥0)))
Proof
Definitions occuring in Statement : 
shadow_inequalities: shadow_inequalities(ineqs), 
satisfies-integer-inequality: xs ⋅ as ≥0, 
l_all: (∀x∈L.P[x]), 
length: ||as||, 
list: T List, 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
prop: ℙ, 
so_apply: x[s], 
or: P ∨ Q, 
shadow_inequalities: shadow_inequalities(ineqs), 
nil: [], 
it: ⋅, 
cons: [a / b], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
nat_plus: ℕ+, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
less_than': less_than'(a;b), 
true: True, 
nat: ℕ, 
listp: A List+, 
guard: {T}, 
subtract: n - m, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
sq_type: SQType(T), 
ge: i ≥ j , 
less_than: a < b, 
has-value: (a)↓
Lemmas referenced : 
set_wf, 
list_wf, 
equal_wf, 
length_wf, 
list-cases, 
product_subtype_list, 
l_all_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
satisfies-integer-inequality_wf, 
istype-int, 
set_subtype_base, 
le_wf, 
l_member_wf, 
int_upper_wf, 
nil_wf, 
l_all_nil, 
istype-void, 
l_all_wf_nil, 
max_tl_coeffs_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
length_of_cons_lemma, 
non_neg_length, 
length_wf_nat, 
cons_wf, 
index-of-min_wf, 
subtype_rel_sets, 
subtract_wf, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
subtype_rel_set, 
int_seg_wf, 
all_wf, 
select_wf, 
sq_stable__le, 
subtype_base_sq, 
nat_wf, 
decidable__le, 
not-le-2, 
subtype_rel_self, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
minus-zero, 
add-zero, 
omega-shadow, 
int_upper_properties, 
nat_properties, 
value-type-has-value, 
int-value-type, 
list-delete_wf, 
shadow-inequalities_wf, 
add-member-int_seg2, 
le-add-cancel2, 
lelt_wf, 
satisfies-shadow-inequalities, 
upper_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
setElimination, 
rename, 
Error :universeIsType, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :productIsType, 
setEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
Error :setIsType, 
Error :inhabitedIsType, 
Error :equalityIsType4, 
natural_numberEquality, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalIntensionalEquality, 
addEquality, 
minusEquality, 
functionEquality, 
imageMemberEquality, 
imageElimination, 
instantiate, 
cumulativity, 
multiplyEquality, 
callbyvalueReduce
Latex:
\mforall{}[n:\{2...\}]
    \mforall{}ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List
        ((\mexists{}xs:\mBbbZ{}  List.  (\mforall{}as\mmember{}ineqs.xs  \mcdot{}  as  \mgeq{}0))
        {}\mRightarrow{}  (\mexists{}xs:\mBbbZ{}  List.  (\mforall{}as\mmember{}shadow\_inequalities(ineqs).xs  \mcdot{}  as  \mgeq{}0)))
Date html generated:
2019_06_20-PM-00_50_40
Last ObjectModification:
2018_10_03-AM-00_13_30
Theory : omega
Home
Index