Nuprl Lemma : termination-equality
∀[T:Type]. ∀[x,y:partial(T)].  x = y ∈ T supposing (x)↓ ∧ (x = y ∈ partial(T)) supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T), 
value-type: value-type(T), 
has-value: (a)↓, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
partial: partial(T), 
quotient: x,y:A//B[x; y], 
cand: A c∧ B, 
value-type: value-type(T), 
squash: ↓T, 
true: True, 
per-partial: per-partial(T;x;y), 
uiff: uiff(P;Q)
Lemmas referenced : 
termination, 
equal_wf, 
partial_wf, 
inclusion-partial, 
has-value_wf-partial, 
value-type_wf, 
equal-wf-base, 
base-partial_wf, 
per-partial_wf, 
termination-equality-base, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
lambdaFormation, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
pointwiseFunctionality, 
independent_pairFormation, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:partial(T)].    x  =  y  supposing  (x)\mdownarrow{}  \mwedge{}  (x  =  y)  supposing  value-type(T)
Date html generated:
2018_05_21-PM-00_05_04
Last ObjectModification:
2018_05_19-AM-07_09_52
Theory : partial_1
Home
Index