Step
*
2
1
1
1
1
2
1
of Lemma
least-equiv-is-equiv-1
1. A : Type
2. R : A ⟶ A ⟶ ℙ
3. a : A
4. b : A
5. L : (a:A × b:A × ((R a b) ∨ (R b a))) List
6. rel_path(A;L;a;b) ∧ 0 < ||L||
⊢ rel_path(A;rev(map(λt.let a,b,r = t in
<b, a, case r of inl(x) => inr x | inr(x) => inl x>;L));b;a)
BY
{ (D -1 THEN Thin (-1) THEN MoveToConcl (-1) THEN RepeatFor 2 (MoveToConcl (-2))) }
1
1. A : Type
2. R : A ⟶ A ⟶ ℙ
3. L : (a:A × b:A × ((R a b) ∨ (R b a))) List
⊢ ∀a,b:A.
(rel_path(A;L;a;b)
⇒ rel_path(A;rev(map(λt.let a,b,r = t in <b, a, case r of inl(x) => inr x | inr(x) => inl x>;L)\000C);b;a))
Latex:
Latex:
1. A : Type
2. R : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. a : A
4. b : A
5. L : (a:A \mtimes{} b:A \mtimes{} ((R a b) \mvee{} (R b a))) List
6. rel\_path(A;L;a;b) \mwedge{} 0 < ||L||
\mvdash{} rel\_path(A;rev(map(\mlambda{}t.let a,b,r = t in
<b, a, case r of inl(x) => inr x | inr(x) => inl x>L));b;a)
By
Latex:
(D -1 THEN Thin (-1) THEN MoveToConcl (-1) THEN RepeatFor 2 (MoveToConcl (-2)))
Home
Index