Step
*
2
1
1
1
1
3
of Lemma
least-equiv-is-equiv-1
.....wf.....
1. A : Type
2. R : A ⟶ A ⟶ ℙ
3. a : A
4. b : A
5. L : (a:A × b:A × ((R a b) ∨ (R b a))) List
6. rel_path(A;L;a;b) ∧ 0 < ||L||
7. L1 : (a:A × b:A × ((R a b) ∨ (R b a))) List
⊢ istype(rel_path(A;L1;b;a) ∧ 0 < ||L1||)
BY
{ (InstLemma `rel_path_wf` [⌜A⌝;⌜λ2a b.(R a b) ∨ (R b a)⌝]⋅ THEN Auto) }
Latex:
Latex:
.....wf.....
1. A : Type
2. R : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. a : A
4. b : A
5. L : (a:A \mtimes{} b:A \mtimes{} ((R a b) \mvee{} (R b a))) List
6. rel\_path(A;L;a;b) \mwedge{} 0 < ||L||
7. L1 : (a:A \mtimes{} b:A \mtimes{} ((R a b) \mvee{} (R b a))) List
\mvdash{} istype(rel\_path(A;L1;b;a) \mwedge{} 0 < ||L1||)
By
Latex:
(InstLemma `rel\_path\_wf` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}a b.(R a b) \mvee{} (R b a)\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index