Nuprl Lemma : subtype_imp-type

[A,B:Type].  (B ⊆imp-type(A;B))


Proof




Definitions occuring in Statement :  imp-type: imp-type(A;B) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B imp-type: imp-type(A;B) so_lambda: λ2y.t[x; y] implies:  Q prop: so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] rel_implies: R1 => R2 infix_ap: y
Lemmas referenced :  imp-type_wf quotient-member-eq base_wf least-equiv_wf equal-wf-base least-equiv-is-equiv implies-least-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaEquality_alt,  Error :universeIsType,  hypothesisEquality sqequalRule axiomEquality hypothesis Error :inhabitedIsType,  sqequalHypSubstitution Error :isect_memberEquality_alt,  isectElimination thin Error :isectIsTypeImplies,  universeEquality pointwiseFunctionalityForEquality extract_by_obid applyEquality closedConclusion functionEquality because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination Error :lambdaFormation_alt,  Error :equalityIsType4

Latex:
\mforall{}[A,B:Type].    (B  \msubseteq{}r  imp-type(A;B))



Date html generated: 2019_06_20-PM-02_01_42
Last ObjectModification: 2018_10_14-PM-05_40_29

Theory : relations2


Home Index