Nuprl Lemma : subtype_imp-type
∀[A,B:Type].  (B ⊆r imp-type(A;B))
Proof
Definitions occuring in Statement : 
imp-type: imp-type(A;B)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
imp-type: imp-type(A;B)
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
Lemmas referenced : 
imp-type_wf, 
quotient-member-eq, 
base_wf, 
least-equiv_wf, 
equal-wf-base, 
least-equiv-is-equiv, 
implies-least-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
hypothesis, 
Error :inhabitedIsType, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
universeEquality, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
applyEquality, 
closedConclusion, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
Error :equalityIsType4
Latex:
\mforall{}[A,B:Type].    (B  \msubseteq{}r  imp-type(A;B))
Date html generated:
2019_06_20-PM-02_01_42
Last ObjectModification:
2018_10_14-PM-05_40_29
Theory : relations2
Home
Index