Nuprl Lemma : wfd-tree-induction
∀[A:Type]. ∀[P:wfd-tree(A) ⟶ ℙ].
  (P[w-nil()] ⇒ (∀f:A ⟶ wfd-tree(A). ((∀a:A. P[f a]) ⇒ P[mk-wfd-tree(f)])) ⇒ (∀w:wfd-tree(A). P[w]))
Proof
Definitions occuring in Statement : 
mk-wfd-tree: mk-wfd-tree(f), 
w-nil: w-nil(), 
wfd-tree2: wfd-tree(A), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
wfd-tree2: wfd-tree(A), 
squash: ↓T, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
co-w-select: w@s, 
btrue: tt, 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
co-w-null: co-w-null(w), 
isl: isl(x), 
w-nil: w-nil(), 
bfalse: ff, 
wfd-subtrees: wfd-subtrees(w), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
w-bars: w-bars(w;p)
Lemmas referenced : 
wfd-tree2_wf, 
all_wf, 
mk-wfd-tree_wf, 
w-nil_wf, 
bool-bar-induction, 
co-w-select-wfd, 
list_wf, 
co-w-null_wf, 
co-w-select_wf, 
set_wf, 
assert_wf, 
append_wf, 
cons_wf, 
nil_wf, 
not_wf, 
nat_wf, 
wfd-tree-cases, 
subtype_rel-equal, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
assert_elim, 
not_assert_elim, 
btrue_neq_bfalse, 
list_induction, 
isect_wf, 
list_ind_nil_lemma, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
co_w_select_nil_lemma, 
wfd-subtrees_wf, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert-co-w-null, 
equal-wf-T-base, 
co-w_wf, 
iff_imp_equal_bool, 
bfalse_wf, 
false_wf, 
assert_of_ff, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
setElimination, 
rename, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
independent_isectElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
productElimination, 
addLevel, 
voidElimination, 
levelHypothesis, 
isect_memberEquality, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
independent_pairFormation
Latex:
\mforall{}[A:Type].  \mforall{}[P:wfd-tree(A)  {}\mrightarrow{}  \mBbbP{}].
    (P[w-nil()]
    {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  wfd-tree(A).  ((\mforall{}a:A.  P[f  a])  {}\mRightarrow{}  P[mk-wfd-tree(f)]))
    {}\mRightarrow{}  (\mforall{}w:wfd-tree(A).  P[w]))
 Date html generated: 
2018_05_21-PM-10_18_20
 Last ObjectModification: 
2017_07_26-PM-06_36_36
Theory : bar!induction
Home
Index