Nuprl Lemma : awf-leaf_wf

[A:Type]. ∀[x:A].  (awf-leaf(x) ∈ awf(A))


Proof




Definitions occuring in Statement :  awf-leaf: awf-leaf(x) awf: awf(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T awf: awf(T) corec: corec(T.F[T]) nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} awf-leaf: awf-leaf(x) decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add list_wf primrec_wf subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf top_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut isect_memberEquality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis voidElimination voidEquality because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation inlEquality universeEquality lambdaEquality int_eqEquality intEquality computeAll unionEquality axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x:A].    (awf-leaf(x)  \mmember{}  awf(A))



Date html generated: 2018_05_21-PM-08_56_17
Last ObjectModification: 2017_07_26-PM-06_19_49

Theory : general


Home Index