Nuprl Lemma : free-dlwc-inc_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:T].
  (free-dlwc-inc(eq;a.Cs[a];x) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
Proof
Definitions occuring in Statement : 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
lattice-point: Point(l), 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
bfalse: ff, 
assert: ↑b, 
fset-antichain: fset-antichain(eq;ac), 
fset-pairwise: fset-pairwise(x,y.R[x; y];s), 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-fset: {}, 
nil: [], 
true: True, 
fset-all: fset-all(s;x.P[x]), 
rev_uimplies: rev_uimplies(P;Q), 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x]
Lemmas referenced : 
free-dlwc-point, 
fset-null_wf, 
fset_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
fset-singleton_wf, 
eqtt_to_assert, 
fset-antichain-singleton, 
fset-antichain_wf, 
fset-all_wf, 
fset-contains-none_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
empty-fset_wf, 
equal_wf, 
deq_wf, 
fset-all-iff, 
deq-fset_wf, 
member-fset-singleton, 
assert-fset-contains-none, 
fset-member_wf, 
assert_witness, 
assert-fset-null, 
fset-filter-is-empty, 
assert-deq-f-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
axiomEquality, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[x:T].
    (free-dlwc-inc(eq;a.Cs[a];x)  \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
Date html generated:
2020_05_20-AM-08_48_41
Last ObjectModification:
2017_07_28-AM-09_15_17
Theory : lattices
Home
Index