Nuprl Lemma : agree_on_common_append
∀[T:Type]
  ∀as,bs,cs,ds:T List.
    (agree_on_common(T;as;cs) 
⇒ agree_on_common(T;bs;ds) 
⇒ agree_on_common(T;as @ bs;cs @ ds)) supposing 
       ((∀x∈as.¬(x ∈ ds)) and 
       (∀x∈cs.¬(x ∈ bs)))
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda3, 
append: as @ bs
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
not: ¬A
, 
l_all: (∀x∈L.P[x])
, 
subtype_rel: A ⊆r B
, 
true: True
, 
agree_on_common: agree_on_common(T;as;bs)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
Lemmas referenced : 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
append_wf, 
agree_on_common_wf, 
not_wf, 
istype-universe, 
l_member_wf, 
l_all_wf, 
isect_wf, 
list_wf, 
all_wf, 
list_induction, 
cons_wf, 
nil_wf, 
l_all_wf_nil, 
l_all_cons, 
agree_on_common_cons2, 
agree_on_common_nil, 
member_append, 
cons_member
Rules used in proof : 
universeEquality, 
isectIsType, 
functionIsType, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
inhabitedIsType, 
functionEquality, 
universeIsType, 
setIsType, 
rename, 
setElimination, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionIsTypeImplies, 
applyEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
inrFormation_alt, 
equalityIsType1, 
unionIsType, 
promote_hyp, 
independent_pairFormation, 
inlFormation_alt, 
unionElimination, 
productIsType, 
equalityIstype
Latex:
\mforall{}[T:Type]
    \mforall{}as,bs,cs,ds:T  List.
        (agree\_on\_common(T;as;cs)
              {}\mRightarrow{}  agree\_on\_common(T;bs;ds)
              {}\mRightarrow{}  agree\_on\_common(T;as  @  bs;cs  @  ds))  supposing 
              ((\mforall{}x\mmember{}as.\mneg{}(x  \mmember{}  ds))  and 
              (\mforall{}x\mmember{}cs.\mneg{}(x  \mmember{}  bs)))
Date html generated:
2020_05_20-AM-07_48_15
Last ObjectModification:
2020_01_22-PM-05_26_07
Theory : list!
Home
Index