Nuprl Lemma : agree_on_common_cons2
∀[T:Type]
  ∀as,bs:T List. ∀x:T.
    (agree_on_common(T;[x / as];bs) 
⇐⇒ agree_on_common(T;as;bs) supposing ¬(x ∈ bs)
    ∧ agree_on_common(T;as;[x / bs]) 
⇐⇒ agree_on_common(T;as;bs) supposing ¬(x ∈ as))
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
agree_on_common: agree_on_common(T;as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cand: A c∧ B
, 
true: True
Lemmas referenced : 
length_wf, 
add_nat_wf, 
length_wf_nat, 
nat_wf, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
equal_wf, 
le_wf, 
list_wf, 
all_wf, 
subtract_wf, 
not_wf, 
l_member_wf, 
iff_wf, 
agree_on_common_wf, 
cons_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
length_zero, 
non_neg_length, 
decidable__equal_int, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
true_wf, 
nil_wf, 
list_induction, 
isect_wf, 
agree_on_common_nil, 
or_wf, 
length_of_cons_lemma, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
cons_member, 
le_weakening2, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
length_of_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
because_Cache, 
universeIsType, 
universeEquality, 
functionEquality, 
productEquality, 
isectEquality, 
independent_pairEquality, 
axiomEquality, 
hyp_replacement, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type]
    \mforall{}as,bs:T  List.  \mforall{}x:T.
        (agree\_on\_common(T;[x  /  as];bs)  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs)  supposing  \mneg{}(x  \mmember{}  bs)
        \mwedge{}  agree\_on\_common(T;as;[x  /  bs])  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs)  supposing  \mneg{}(x  \mmember{}  as))
Date html generated:
2019_10_15-AM-10_53_13
Last ObjectModification:
2018_09_27-AM-11_00_36
Theory : list!
Home
Index