Nuprl Lemma : agree_on_common_cons2

[T:Type]
  ∀as,bs:T List. ∀x:T.
    (agree_on_common(T;[x as];bs) ⇐⇒ agree_on_common(T;as;bs) supposing ¬(x ∈ bs)
    ∧ agree_on_common(T;as;[x bs]) ⇐⇒ agree_on_common(T;as;bs) supposing ¬(x ∈ as))


Proof




Definitions occuring in Statement :  agree_on_common: agree_on_common(T;as;bs) l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T nat: implies:  Q guard: {T} ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B agree_on_common: agree_on_common(T;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B true: True
Lemmas referenced :  length_wf add_nat_wf length_wf_nat nat_wf nat_properties decidable__le add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf le_wf list_wf all_wf subtract_wf not_wf l_member_wf iff_wf agree_on_common_wf cons_wf set_wf less_than_wf primrec-wf2 length_zero non_neg_length decidable__equal_int list_ind_cons_lemma list_ind_nil_lemma true_wf nil_wf list_induction isect_wf agree_on_common_nil or_wf length_of_cons_lemma itermSubtract_wf int_term_value_subtract_lemma cons_member le_weakening2 decidable__lt intformless_wf int_formula_prop_less_lemma length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality addEquality introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename sqequalRule natural_numberEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation because_Cache universeIsType universeEquality functionEquality productEquality isectEquality independent_pairEquality axiomEquality hyp_replacement inlFormation inrFormation

Latex:
\mforall{}[T:Type]
    \mforall{}as,bs:T  List.  \mforall{}x:T.
        (agree\_on\_common(T;[x  /  as];bs)  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs)  supposing  \mneg{}(x  \mmember{}  bs)
        \mwedge{}  agree\_on\_common(T;as;[x  /  bs])  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs)  supposing  \mneg{}(x  \mmember{}  as))



Date html generated: 2019_10_15-AM-10_53_13
Last ObjectModification: 2018_09_27-AM-11_00_36

Theory : list!


Home Index