Nuprl Lemma : l_before_interleaving

[T:Type]. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L)  {∀x,y:T.  (x before y ∈ L1  before y ∈ L)})


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) l_before: before y ∈ l list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  guard: {T} interleaving: interleaving(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top
Lemmas referenced :  l_before_wf equal_wf nat_wf length_wf_nat length_wf add_nat_wf nat_properties decidable__le add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf le_wf disjoint_sublists_wf list_wf l_before_sublist disjoint_sublists_sublist
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis productEquality dependent_set_memberEquality addEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  before  y  \mmember{}  L1  {}\mRightarrow{}  x  before  y  \mmember{}  L)\})



Date html generated: 2017_10_01-AM-08_35_50
Last ObjectModification: 2017_07_26-PM-04_25_59

Theory : list!


Home Index