Nuprl Lemma : weighted-sum-split
∀[p,q:ℚ List]. ∀[F:ℕ||p @ q|| ⟶ ℚ].
  (weighted-sum(p @ q;F) = (weighted-sum(p;F) + weighted-sum(q;λi.(F (i + ||p||)))) ∈ ℚ)
Proof
Definitions occuring in Statement : 
weighted-sum: weighted-sum(p;F), 
qadd: r + s, 
rationals: ℚ, 
length: ||as||, 
append: as @ bs, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
weighted-sum: weighted-sum(p;F), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
uimplies: b supposing a, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
guard: {T}, 
squash: ↓T, 
uiff: uiff(P;Q), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
length-append, 
sum_split_q, 
length_wf, 
rationals_wf, 
non_neg_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
qmul_wf, 
int_seg_wf, 
append_wf, 
lelt_wf, 
select_wf, 
int_seg_properties, 
decidable__lt, 
add-is-int-iff, 
intformless_wf, 
int_formula_prop_less_lemma, 
false_wf, 
qadd_wf, 
squash_wf, 
true_wf, 
qsum_wf, 
equal_wf, 
select_append_front, 
iff_weakening_equal, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
list_wf, 
sum_shift_q, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
select_append_back, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
addEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
because_Cache, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality, 
imageMemberEquality, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
axiomEquality
Latex:
\mforall{}[p,q:\mBbbQ{}  List].  \mforall{}[F:\mBbbN{}||p  @  q||  {}\mrightarrow{}  \mBbbQ{}].
    (weighted-sum(p  @  q;F)  =  (weighted-sum(p;F)  +  weighted-sum(q;\mlambda{}i.(F  (i  +  ||p||)))))
Date html generated:
2018_05_22-AM-00_34_12
Last ObjectModification:
2017_07_26-PM-06_59_46
Theory : randomness
Home
Index