Nuprl Lemma : approximate-qsqrt-ext
∀a:{a:ℚ| 0 ≤ a} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ q) ∧ |(q * q) - a| < (1/n))])
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
qless: r < s, 
qsub: r - s, 
qdiv: (r/s), 
qmul: r * s, 
rationals: ℚ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
experimental: experimental{impliesFunctionality}(possibleextract), 
subtract: n - m, 
qsub: r - s, 
qadd: r + s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
outl: outl(x), 
bottom: ⊥, 
outr: outr(x), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
qpositive: qpositive(r), 
lt_int: i <z j, 
bor: p ∨bq, 
band: p ∧b q, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
approximate-qsqrt, 
better-q-elim, 
square-between-lemma3, 
sq_stable_from_decidable, 
decidable__qle, 
q-elim, 
square-between-lemma2, 
sq_stable__from_stable, 
stable__from_decidable, 
any: any x, 
decidable__lt, 
square-between-lemma1, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
iff_preserves_decidability, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
approximate-qsqrt, 
lifting-strict-spread, 
istype-void, 
strict4-apply, 
strict4-spread, 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-less, 
better-q-elim, 
square-between-lemma3, 
sq_stable_from_decidable, 
decidable__qle, 
q-elim, 
square-between-lemma2, 
sq_stable__from_stable, 
stable__from_decidable, 
decidable__lt, 
square-between-lemma1, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
iff_preserves_decidability
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}a:\{a:\mBbbQ{}|  0  \mleq{}  a\}  .  \mforall{}n:\mBbbN{}\msupplus{}.    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  q)  \mwedge{}  |(q  *  q)  -  a|  <  (1/n))])
Date html generated:
2019_10_16-PM-00_38_12
Last ObjectModification:
2019_06_26-PM-04_16_38
Theory : rationals
Home
Index