Nuprl Lemma : equal-rat-cube-complexes
∀k:ℕ
  ∀[n:ℕ]
    ∀K,L:n-dim-complex.
      uiff(permutation(ℚCube(k);K;L);∀c:{c:ℚCube(k)| (↑Inhabited(c)) ∧ (dim(c) = n ∈ ℤ)} . ((c ∈ K) ⇐⇒ (c ∈ L)))
Proof
Definitions occuring in Statement : 
rational-cube-complex: n-dim-complex, 
rat-cube-dimension: dim(c), 
inhabited-rat-cube: Inhabited(c), 
rational-cube: ℚCube(k), 
permutation: permutation(T;L1;L2), 
l_member: (x ∈ l), 
nat: ℕ, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
ge: i ≥ j , 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
or: P ∨ Q, 
rat-cube-dimension: dim(c), 
guard: {T}, 
squash: ↓T, 
sq_stable: SqStable(P), 
so_apply: x[s], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
rational-cube-complex: n-dim-complex, 
member: t ∈ T, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__no_repeats, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
l_all_iff, 
sq_stable__iff, 
sq_stable__all, 
iff_wf, 
equal-wf-base, 
assert_wf, 
permutation-when-no_repeats, 
permutation_inversion, 
l_member_functionality_wrt_permutation, 
decidable__equal_rc, 
sq_stable__l_member, 
istype-nat, 
rational-cube-complex_wf, 
permutation_wf, 
le_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
inhabited-rat-cube_wf, 
istype-assert, 
rational-cube_wf, 
l_member_wf
Rules used in proof : 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
cumulativity, 
instantiate, 
unionElimination, 
productElimination, 
closedConclusion, 
baseApply, 
productEquality, 
setEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
inhabitedIsType, 
functionIsType, 
equalitySymmetry, 
sqequalBase, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
minusEquality, 
lambdaEquality_alt, 
intEquality, 
applyEquality, 
equalityIstype, 
productIsType, 
sqequalRule, 
setIsType, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
universeIsType, 
independent_pairFormation, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[n:\mBbbN{}]
        \mforall{}K,L:n-dim-complex.
            uiff(permutation(\mBbbQ{}Cube(k);K;L);\mforall{}c:\{c:\mBbbQ{}Cube(k)|  (\muparrow{}Inhabited(c))  \mwedge{}  (dim(c)  =  n)\} 
                                                                              ((c  \mmember{}  K)  \mLeftarrow{}{}\mRightarrow{}  (c  \mmember{}  L)))
Date html generated:
2019_10_29-AM-07_59_51
Last ObjectModification:
2019_10_22-AM-10_23_51
Theory : rationals
Home
Index